

Validation of the ocean products from the space-borne

ATLAS, ALADIN and CALIOP and air-borne LNG lidars

<u>Cédric Jamet</u>⁽¹⁾, Cyrille Flamant⁽²⁾, Eric Lécuyer⁽²⁾, Julien Delanoë⁽²⁾, Xavier Mériaux⁽¹⁾, Quitterie Cazenave⁽²⁾, Sayoob Vadakke Chanat⁽¹⁾

(1) LOG/ULCO, Wimereux, France (2) LATMOS, Paris, France

10- Measurement techniques and observations of Ocean properties

June 29th , 12:15pm UTC

Wednesday_ 10_P04

Purpose of the study

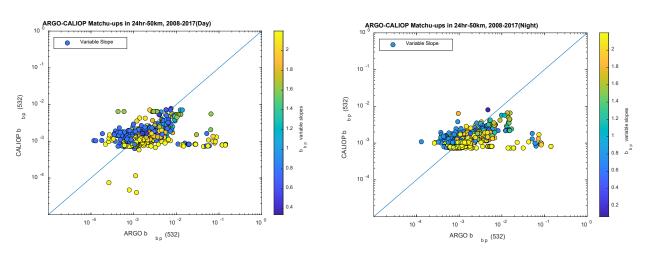
Remote sensing of ocean color has changed our vision of the distribution of phytoplankton and ocean carbon for the past forty years \rightarrow Synoptic view at high spatial (hundreds to thousand meters) and temporal (~2 days) resolutions

BUT observation limited to clear-sky, day-light, over clouds, high Sun elevation angles and are exponentially weighted toward the ocean surface

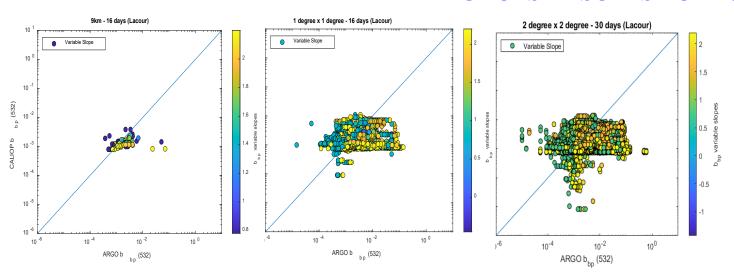
- **→** LIDAR can help to overcome some of these issues
- → No existing oceanic profiling lidar but space-borne lidars exist: CALIOP on CALIPSO and ATLAS on IceSat-2
- → Need to validate the oceanic products from those space-borne lidars

DATASET

- AEOLUS DATA
 - ALADIN UV HSRL
 - Monitoring of wind profiles
- CALIOP DATA
 - (http://orca.science.oregonstate.edu/lidar_nature_2019.php)
 - 2010-2017
 - Globally
 - Day- and nighttime
- IN-SITU MEASUREMENTS
 - In-situ measurements in Cabo Verde
 - BGC-Argo (Claustre et al., 2020)
 - Globally
 - 2010-2017


Sensor	Dates	# stations
ADM/AEOLUS	10-15-17-22 Sept. 2021	9
CALIOP	09 Sept. 2021	2
LNG	10-17-18 Sept. 2021	11

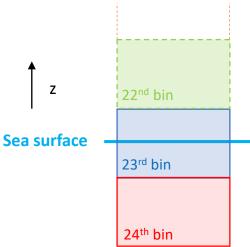
VALIDATION OF CALIOP OCEANIC PRODUCTS

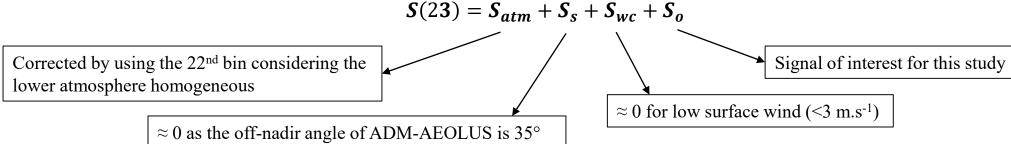


MATCHUPS RESULTS FOLLOWING BISSON MATCHUP PROTOCOL FOR CALIOP

	DAY	DAY	NIGHT	NIGHT
Statistical parameters	Fixed slope	Variable slope	Fixed slope	Variable slope
N	1007	1007	788	788
RMSE (m ⁻¹)	0.00983	0.01385	0.00927	0.01232
Bias (m ⁻¹)	-0.00170	-0.00265	-0.00173	-0.00257
Relative Error (%)	56	49	48	43

MATCHUPS RESULTS FOLLOWING LACOUR



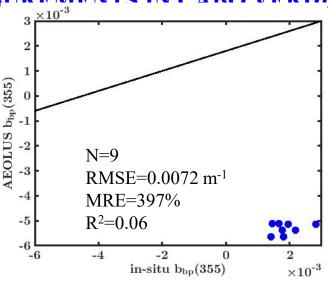

	CONFIG 1 ALL	CONFIG 1 ALL	CONFIG 2 ALL	CONFIG 2 ALL	CONFI G 3 ALL	CONFIG 3 ALL
Statistical parameters	Fixed slope	Variable slope	Fixed slope	Variable slope	Fixed slope	Variable slope
N	102	102	15103	15103	146263	146263
RMSE (m ⁻¹)	0.00707	0.00896	0.00738	0.019493	0.009973	0.01343
Bias (m ⁻¹)	-0.00138	-0.00204	-0.001139	-0.001744	0.001474	-0.002184
Relative Error (%)	44	44	61	54	61	53

VALIDATION OF AEOLUS OCEANIC PRODUCTS

- Estimation approach for the LiDAR derived optical parameters
 - > ADM-AEOLUS HSRL algorithm
 - Taking into account the altitude of the bins to get signal from the ocean
 - SNR of bin #24 may be too low -> choice of bin #23
 - Decomposition of the Lidar signal in bin #23 (Li et al., 2007; Josset et al., 2010)

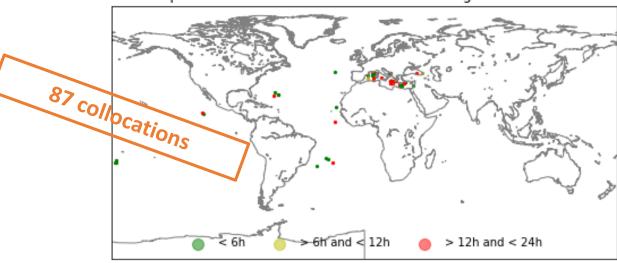
- S_{atm} is the contribution of the atmosphere in the 23rd bin
- The specular reflection of the LiDAR signal on the sea surface S_s is a function of the wind speed
- The whitecaps signal S_{wc} is a function of the effective reflectance and the surface wind
- S_{θ} is the ocean attenuated backscatter signal, i.e. the signal of interest

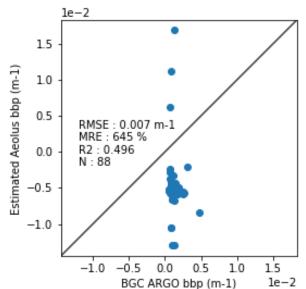
VALIDATION OF AEOLUS OCEANIC PRODUCTS



COMPARISON OF AEOLUS DERIVED- b_{bp} AGAINST IN-SITU MEASUREMENTS IN CARO VERDE $\frac{1}{3} \times \frac{10^{-3}}{10^{-3}}$

$$\beta_P = \beta_M \frac{(K_{Ray}C_1 - S_R K_{Mie} C_4)}{(S_R K_{Mie} C_3 - K_{Ray} C_2)}, with S_R = \frac{S_M}{S_P}$$


- $b_{bp} = 2\pi . \chi(180^{\circ}). \beta_p$
- $S_{atm}(23) = S_{atm}(22) \frac{altitude_bin(23)}{height_bin(23)}$
- > Cross-talk (for water spectra,


$$C_1 = 1.14, C_2 = 1.64, C_3 = 1.30, C_4 = 1.00$$

COMPARISON OF AEOLUS DERIVED- b_{bn} AGAINST IN-SITU MEASUREMENTS GLOBALLY

Temporal distance between Aeolus and BGC Argo measurements

CONCLUSIONS

- Use of space-borne lidar to estimate bio-optical and biogeochemical properties of the seawater \rightarrow No dedicated oceanic lidar \rightarrow Use of CALIOP, ATLAS and ALADIN \rightarrow Need to validate estimates
- Validation of CALIOP oceanic products using BGC-Argo and two different validation schemes
 - Comparison of two validation protocols for the day- and nighttime CALIOP b_{bp} data using BGC-Argo worldwide between 2010 and 2017
 - Slight differences between day- and nighttime
 - Increased errors when increasing the temporal and distance windows
 - Impact of the b_{bp} spectral slope
 - Impact of the calculation of BGC-Argo $b_{bp}(532)$ from $b_{bp}(700)$
- → Need to mix between config 1 of Lacour and Bisson's scheme
- → Need to validate against other datasets such as in Cabo Verde
- → Need to develop a validation protocol adopted by the community
- Algorithm's development to use ALADIN UV HSRL signals to estimate the particulate back-scattering coefficient at 355 nm
 - High error on b_{bn} retrievals
 - Impact on the wway to correct the atmosphere
 - Negative values when including Cx coefficients
 - No relevant to derive POC and C_{phyto} at this stage
- →Need to better understand the ALADIN signal (threshold on the SNR, binning on more observations)
- → Sensitivity study on the Cx values
- → Need to consider the surface as a function of the wind speed
- \rightarrow Need to understand the content of the ground signal \rightarrow May be useful to correct the contribution of the atmosphere

ACKNOWLEDGMENTS

- ESA for funding the project through the AEOLUS+-Innovation program
- CNES for funding the Cabo Verde sea campaign and the work on CALIOP through the TOSCA program
- Alain Dabas and his team for providing the Cx values for water and for their valuable comments on this work and the cloud flag
- The Ocean Science Mindelo Center (OSCM) for the help to organize the sea campaign and the use of their facilities: Pericles Silva, Ivanice Monteiro and Elizandro Rodrigues
- The captain and the fishermen of the Gamboa ship