New Techniques to Eliminate Photon-Noise Biases from Lidar and Radar
Data for Tracing Gravity Wave Energy from the Stratosphere to the MLT
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Lidar is a powerful way to study atmospheric waves by analyzing second order statistics of the

lidar data. However, noise in lidar measurements biases second order parameters like Bias in Lidar Epm Calculation
variance and flux, and this bias is often strong enough to entirely prevent reliable calculation of [
the wave behavior. Eq. 1 shows the calculation of variance, how the perturbations are
comprised of two components, and how this calculation results in a bias of (Ar)2. The figure 45 |
on the right demonstrates the strength of this bias under low-SNR conditions, emphasizing the
necessity of applying some form of correction method. ;&;40
This study utilizes potential energy density (Epm), to quantify wave energy, as it directly scales <
with atmospheric variance and makes a good demonstration of these bias correction methods.
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New Techniques to Eliminate Photon-Noise Biases from Lidar and Radar

Data for Tracing Gravity Wave Energy from the Stratosphere to the MLT [Variance Subtraction (VS)

Noise-Variance Subtraction (VS) is the traditional solution to this bias.
This method utilizes parameter error to estimate the strength of the
noise-induced variance and subtracts it from the total variance. Eq. 3
and 4 are from Whiteway & Carswell (1995). It is easy to calculate and
easy to apply with very low computational expense.

Performance: Regardless of the amount of data, the VS method can
yield negative values for variance/Epm if the error is high enough (i.e.,
bad data conditions, high altitude, etc.) as seen in the below Figs. a-d.
More data improves precision but does not drive result closer to model.

Atmospheric parameter: r (density, temperature)
Parameter error: or
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New Techniques to Eliminate Photon-Noise Biases from Lidar and Radar

Data for Tracing Gravity Wave Energy from the Stratosphere to the MLT [Spectral Proportion (SP)
The Spectral Proportion Method was developed by Chu et al., 2018. This 6 10° Alt=304km , «10° Alt=362km _  Gravity Wave Proportion _
method involves a Monte Carlo simulation where 1000 replicas of the 3 af @1 [\i ©
existing observation are generated, random noise is applied onto each | & 2f /\ 2 S sl ]
(scaled by parameter error value), and a 1D-FFT of each noisy-replica is O o(’) “&}gs o5 : "

averaged at every altitude. Then, we find noise floor of resulting average 10° Alt=429km _ 10* Alt=49.6 km
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and calculate p(z) via Eq. 5. Results using SP are always positive due to | _ ©] (@ -
) ) 3 2F 1 2f : i
scaling as opposed to subtraction 3.t 1 a5 h
Performance: Yields results much closer to modeled Epm (Figs. ¢ and d), L \}\;\5*\\*\ os 0[; o o5 ;
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though it overestimates under low-SNR. Precision is increased greatly by Frequency (1/h) Frequency (1/h) O o2 05 075 1
the addition of more samples, yet accuracy (proximity to model result) [=—Noise Floor ——Average Spectrum| P)
remains similar regardless of sample size.
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New Techniques to Eliminate Photon-Noise Biases from Lidar and Radar
Data for Tracing Gravity Wave Energy from the Stratosphere to the MLT

[Interleaved Method (INT)
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The Interleaved Method was developed by Gardner & Chu 2020. This method is
more involved than the previous two and starts earlier in the data processing
procedure. This technique begins with the photon bins at the earliest level. When
summing the photons into larger-sized bins, as is typical of lidar processing, we
instead take alternating bins and create two samples, as demonstrated in the figure on
the left. It 1s essential to interleave in such a way as finely as possible so that samples
A and B represent the most similar parcel of atmosphere as possible, therefore the
interleaving is done on raw photon bins before any other integration is done. The
results 1s like having two independent, adjacent lidar systems, yet only requires one.

Below is demonstrated the reason for this splitting. We substitute the variance used in
prior Epm calculations for the covariance of the two samples as shown in Eq. 8. We
then have a variance without a bias term, which is only dependent on wave

perturbations as the noise dependent terms have dropped out due to non-correlation.

Calculating second order parameters

Sample B

~ 1km photons, 10 bins
~ 1km photons, 10 bins

I'p
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New Techniques to Eliminate Photon-Noise Biases from Lidar and Radar .
_Data for Tracing Gravity Wave Energy from the Stratosphere to the MLT I Interleaved Method (INT)

o Domber s gy 2015
The biggest thing to consider when using the interleaved method is that by splitting i i :
the photon counts in half two create the two samples, the SNR has been decreased a5 F == A4 N
considerably. This results in some individual runs being even noisier than the noisy =
VS runs were, and some rune even having negative values as shown in the Figure on 340 - 1 ¢ B
the right. The difference between INT and VS, however, is that the INT profiles are 2
not consistently negative, and are just noisy, meaning that under sufficient sample <0 ——VS —SP —int
size, the resulting profile will begin to trend back towards all positive values, the real *r 4 b E
Epm as determined by atmospheric perturbations. This can be seen in the bold profile i 1 T
in the Figure on the right, where the light profiles show individual runs. 0 T e T 20 e e
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The results of this method are generally the Summer Epm (J/kg)
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New Techniques to Eliminate Photon-Noise Biases from Lidar and Radar
_Data for Tracing Gravity Wave Energy from the Stratosphere to the MLT

[ Conclusions and Results

The goal of this study was to determine when each method should be used. By the
results in the last few sections, two main factors drive this decision. The most
important is the SNR of the data followed by the amount of data available for the
study. Each method responds differently to changes in each of these variables,
leading us to determine the following guidelines:

e Variance Subtraction
* Should be used only under very high SNR such as low-altitude measurements.
Its major benefit is ease of application, yet it fails easily.

e Spectral Proportion
* This method has very strong performance under high-SNR, yielding near
perfect results in simulated winter conditions (Jandreau and Chu, 2022) and
agreeing with INT at most altitudes. However, under low-SNR, it is difficult to
determine the noise floor and the result undercorrects the bias (resulting in
overestimated variance/Epm). It should be used when a small set of samples is
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being analyzed.

* Interleaved Method
* The interleaved method is the only one of the three which yields can
statistically eliminate the bias entirely. However, this method fails heavily
when there are not sufficient samples available. It should be utilized whenever
a large batch of samples is being processed, as this will counteract the increased
uncertainty resulting in a reliable result.
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These results showcase the application of the
newly developed methods. Previous studies
of the dataset were only able to reliably reach
~60 km in the winter, with summer 50 km
results not being nearly as reliable. While the
summer profiles here still become noisy at
their upper levels, the trends are still
observable. This study has enabled a detailed
look into McMurdo’s upper atmosphere wave
dynamics, a work which is now in progress.
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