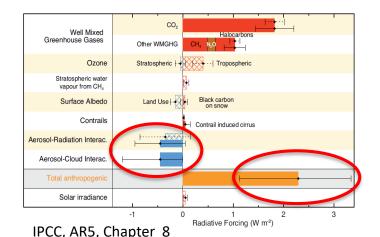
# Aerosol typing and space-borne lidars – potentials and limitations

Athena Augusta Floutsi, Holger Baars, Moritz Haarig, and Ulla Wandinger

01- Space-borne lidar missions, instruments and science

Thursday, 30 June 2022, 12:00


01\_P04





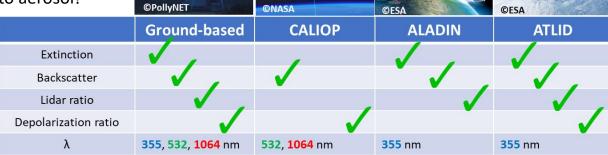


# Aerosol typing – why?



- Identification of the main aerosol sources
- Quantification of the direct and indirect aerosol radiative effects
   & closure studies

**Aeolus** 


- **Separation** between natural and anthropogenic radiative effect
- Improvement of measurement retrievals and modelling
- Satellite validation and harmonisation of datasets

**CALIPSO** 

Data assimilation

Still large uncertainties attributable to aerosol!

Different lidars require different typing schemes





**EarthCARE** 

### Aerosol typing – how?

#### **Intensive optical parameters**

- Lidar ratio: S (355, 532 nm) (Ground-based + ALADIN + ATLID) size, shape, refractive index
- Depolarization ratio:  $\delta$  (355, 532 nm) (GB + CALIOP+ATLID) shape, (size, refractive index)
- Ångström exponents (GB + CALIOP)

backscatter-related: a(532/1064), a(355/532)

extinction-related: a(355/532)

size, (refractive index)

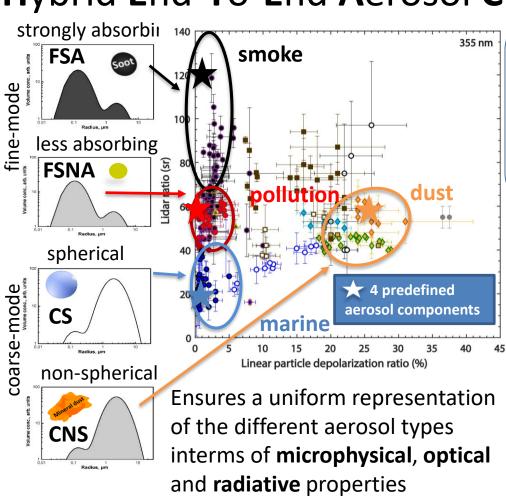
| Folluted continental<br>Biomass burning | Mineral dust                                                                     | sea-salt-<br>containing<br>water droplet                                                                                                                |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Size:                                   | Ångström Exponent, Lidar ratio                                                   |                                                                                                                                                         |  |  |  |
| å > 1                                   | å = 0                                                                            | å = 0                                                                                                                                                   |  |  |  |
| Absorption: Lidar ratio                 |                                                                                  |                                                                                                                                                         |  |  |  |
| S > 60 sr                               | S = 55 sr                                                                        | S = 25 sr                                                                                                                                               |  |  |  |
| Shape:                                  | Depolarization ratio                                                             |                                                                                                                                                         |  |  |  |
| δ = 0.05                                | δ = 0.31                                                                         | δ = 0.02                                                                                                                                                |  |  |  |
|                                         | Polluted continental Biomass burning  Size: å > 1  Absorption: S > 60 sr  Shape: | Polluted continental Biomass burning  Size: Ångström Exponent, Li å > 1 å = 0  Absorption: Lidar ratio S > 60 sr S = 55 sr  Shape: Depolarization ratio |  |  |  |

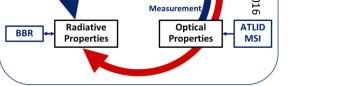
Tesche, PhD thesis, 2011

|         | Ground-based                                                      | CALIOP                                | ALADIN | ATLID                                     |
|---------|-------------------------------------------------------------------|---------------------------------------|--------|-------------------------------------------|
| Methods | Threshold-based<br>Cluster analysis<br>Artificial Neural Networks | Decision tree                         | Ş      | Hybrid-End-To-End<br>Classification Model |
|         | Sasano and Browell, 1989                                          | Omar et al., 2009<br>Kim et al., 2018 |        | Wandinger et al., 2016                    |



Hybrid End-To-End Aerosol Classification – HETEAC

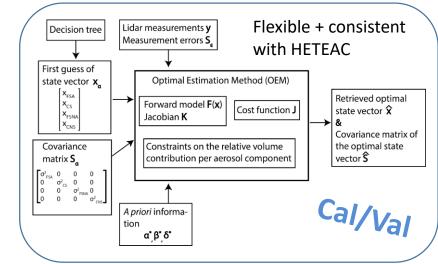

Calculation


Aerosol

Model

Microphysical

**Properties** 






Aerosol

Type

#### **New OEM-based typing scheme**



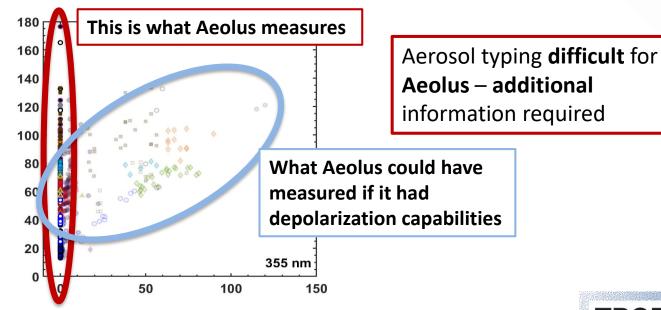
# Aeolus & aerosol typing

- ALADIN emits **circular-polarized** light but detects the **co-polar** component of the backscattered light only
- Cross-polar component missing

Signal loss in case of polarizing particles!

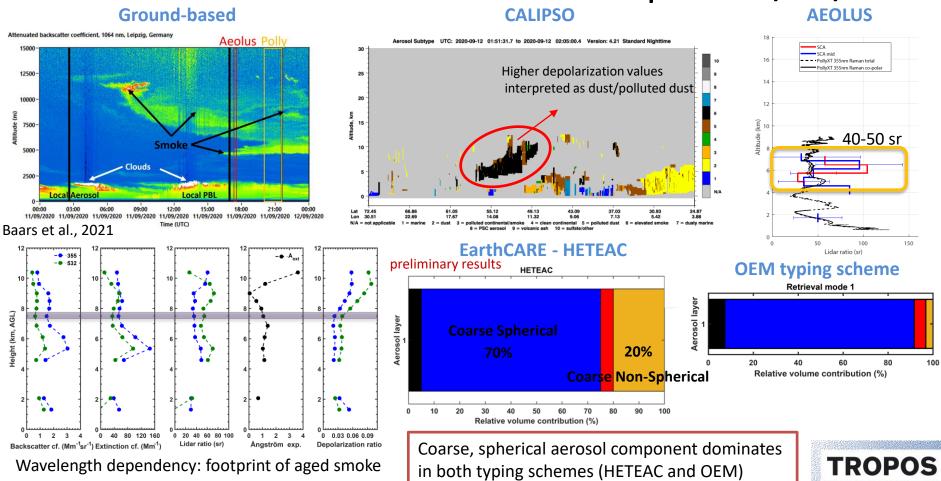


Transformation of ground-based backscatter to Aeolus co-polar backscatter


$$\delta_{lin} = \frac{\beta_{\perp}}{\beta_{\parallel}}$$

$$\delta_{\text{circ}} = \frac{2\delta_{\text{lin}}}{1 - \delta_{\text{lin}}}$$

$$> \delta_{\text{lin}}$$


$$\beta_{co} = \frac{\beta_{tot}}{(\delta_{circ} + 1)}$$
underestimated

$$S_{co} = S(\delta_{circ} + 1)$$
overestimated





# Californian Smoke Over Central Europe – 11/09/2020

