Deep Learning Based Convective Boundary Layer Determination for
Aerosol and Wind Profiles observed by Wind Lidar
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Introduction

1.

To investigate the possibility to predict convective
boundary layer from aerosol backscatter profile.

A deep-learning model is used to build a non-
supervised package to identify the CBLH from aerosol
and wind products measured by coherent Doppler lidar
(CDL).

The modified Stacked Hourglass Network used in this
study is a conv-deconv architecture typically applied to
human pose estimation.

The ground truth of CBLH is determined from the
vertical-velocity variance.

Normalized backscatters (NBS) and Radical wind
speeds (W,) are individually selected to train the model.

The minimum required data size for the training is
examined. The differences between ground truth and

predicted CBLH are presented.



Coherent Doppler Lidar

Coherent Doppler lidar (CDL, WindPrint S-4000)

This CDL is jointly developed by Ocean Univ. of China and Leice

Transient Technology Co., Ltd.

Operated in 5-beam DBS model in Taichung City in Central Taiwan
in 2018.

Model

Doppler Wind Lidar

Detection range

Data update

Range resolution

Wind speed accuracy
Wind speed range

Wind direction accuracy
Power supply

Power consumption

Operating temperature
Operating humidity
Housing classification
LASER Safety Compliance

Size

40m — 4000m (up to 6 km)

Up to 0.25s (fastest)
15m/30m/60m (configurable)
0.1 m/s

0—70 m/s

0.1°

AC 220V /50Hz or DC 12V /24V
200W

500W when cooling at 40 °C
-30 °C to +50 °C

0 - 100%

1P65

1M IEC/EN 60825-1 (eyes safety)
600x600x800mm

Vertical-Velocity Variance

The vertical-velocity variance o2 from the CDL is used to determine the CBL

depth.

A threshold of 62 =0.035 is found suitable for our location and was validated

with co-launched radiosondes.

Stacked Hourglass Network

Stacked hourglass network is a state-of-the-art architecture for human pose
estimation.

Image features are learned by convolutional and pooling layers at multi-
resolutions to capture the joints of human body.

A stacked hourglass network contains eight hourglass modules. The first
hourglass module produces early predictions, and subsequent modules
further improve the predictions.

The vertical profile of lidar data is formatted as a 2D image and sliced into
15-minute segments. Each segment has 184 lidar samples periodically
collected from south, east, west, north, and zenith.

The values of radical wind speed and NBS (denoted as SNR in raw data)
are encoded as 184x192 RGB image. The NBS is individually encoded as
gray-scale images.
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Results

Data Set

* One year of CDL data is collected and 30,000
segment images are generated accordingly.

« Segment images and the ground truths from 36 days,
72 days, 120 days, and 230 days randomly selected
from the whole data set are used to train the model.

« Vertical measurements are excluded from training
data.

« Data measured during 2018/12/30-2019/1/15
(excluded from the training period) are chosen to
examine the CBLH predicted by stacked hourglass
network.

The flow chart of the training and localization process
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Figure 1:

* (a) Range corrected lidar backscatter and (b) vertical-velocity variance observed on
2018/7/15 15:00-15:10 (local time).

* (c) the image encoded from 15-minute segment (radical wind speed + normalized
backscatter or only normalized backscatter).

* (d)-(f) Virtual potential temperature, specific humidity, wind arrow measured by co-
launched radiosonde. The CBLH determined by vertical velocity variance is 904 m (red
line).
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Figure 2:

* The time series (2018/12/30-2019/1/15) of CBLH
predicted by stacked hourglass network using 36
days, 72 days, 120 days, and 230 days
measurements as the training base.

» The predicted CBLH generally well agrees with the
ground truth.
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Figure 3:
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Time-height variation of (a) the Range corrected backscatter signal and (b) the vertical-velocity variance
measured during 1/12-1/13, 2019. The CBLH predicted from the training bases of 72 days and 120 days Wr (blue
A) and NBS (green o) are composed in (a) and (b).

» Aerosol Layer determined by gradient method (0RCB/dz, yellow line) is shown for comparison, where RCB is the
range corrected signal in logarithm scale.
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Figure 4:

The frequency histogram of the difference
between ground truths and CBLH predicted
using 36, 72, 120, and 230 days Wr+NBS as
training data.

About 47% of predicted daytime CBLH are
underestimated and 41% are overestimated.
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Figure 5:

Same figure 4 but using NBS as training
data.

46% of predicted daytime CBLH are
underestimated

44% are overestimated
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Same figure 5 but separate to daytime and
nighttime. Training set of 120 days.

The differences between daytime and nighttime
is not significant.

Both Wr+NBS and NBS tend to 1 level (26m)
overestimated in the nighttime and 1 level
underestimated in the daytime.

About 45% of predicted night-time CBLH are
underestimated and 59% are overestimated.
about 32% of predicted nighttime CBLH are
under-estimated and 59% are overestimated.




Mean Absolute Error (MAE)

Summary

The mean value of CBLH during the testing period A 210 S Ve D 2 Dy 220 e
(2018/12/30 - 2019/1/15) are 433m and 255m for 136 m 7€ m 65 m 56 m
the daytime and the nighttime, respectively.
The deep-learning based method can efficiently find “ e e L0 0 83 m
the feature of CBLH from CDL products with MAE 140 m o o i
about 60~120m without any prior assumption.
A number of 72 days measurement is required 140 m 72m 61 m 57 m
obtained stable pregllctlon. N | _ 132 m 126 101 m 91 m
Our results also indicate that it is possible to derive
CBLH from backscatter profiles measured by Mie 150 m 116 99 m 85 m
lidars.
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