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Introduction
1. To investigate the possibility to predict convective 

boundary layer from aerosol backscatter profile.

2. A deep-learning model is used to build a non-
supervised package to identify the CBLH from aerosol 
and wind products measured by coherent Doppler lidar 
(CDL).

3. The modified Stacked Hourglass Network used in this 
study is a conv-deconv architecture typically applied to 
human pose estimation.
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4. The ground truth of CBLH is determined from the 
vertical-velocity variance.

5. Normalized backscatters (NBS) and Radical wind 
speeds (Wr) are individually selected to train the model.

6. The minimum required data size for the training is 
examined. The differences between ground truth and 
predicted CBLH are presented.



Coherent Doppler Lidar
• Coherent Doppler lidar (CDL, WindPrint S-4000)

• This CDL is jointly developed by Ocean Univ. of China and Leice
Transient Technology Co., Ltd.

• Operated in 5-beam DBS model in Taichung City  in Central Taiwan 
in 2018.

Stacked Hourglass Network

• The vertical-velocity variance 𝜎!" from the CDL is used to determine the CBL 
depth.

• A threshold of 𝜎!" =0.035 is found suitable for our location and was validated 
with co-launched radiosondes.

Table 2: Specifications of WindPrint S-4000

Model Doppler Wind Lidar

Detection range 40m – 4000m (up to 6 km)

Data update Up to 0.25s (fastest)

Range resolution 15m/30m/60m (configurable)

Wind speed accuracy 0.1 m/s

Wind speed range 0 – 70 m/s

Wind direction accuracy 0.1�

Power supply AC 220V/50Hz or DC 12V/24V

Power consumption 200W

500W when cooling at 40 �C

Operating temperature -30 �C to +50 �C

Operating humidity 0 – 100%

Housing classification IP65

LASER Safety Compliance 1M IEC/EN 60825-1 (eyes safety)

Size 600⇥600⇥800mm

Data transfer Ethernet 1000Base-T

Output data Wind profile, LOS wind speed

PPI/RHI/CAPPI 3-D wind field

local temperature, humidity, pressure

GPS coordinates, time,

Signal-to-Noise Ratio (SNR),

GPRS (optional)
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• Stacked hourglass network is a state-of-the-art architecture for human pose 
estimation.

• Image features are learned by convolutional and pooling layers at multi-
resolutions to capture the joints of human body.

• A stacked hourglass network contains eight hourglass modules. The first 
hourglass module produces early predictions, and subsequent modules 
further improve the predictions.

• The vertical profile of lidar data is formatted as a 2D image and sliced into 
15-minute segments. Each segment has 184 lidar samples periodically 
collected from south, east, west, north, and zenith.

• The values of radical wind speed and NBS (denoted as SNR in raw data)
are encoded as 184x192 RGB image. The NBS is individually encoded as 
gray-scale images.

Chu, X et al. (2017). Multi-context attention for human pose estimation. doi:10.1109/CVPR.2017.601
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Figure 1:
• (a) Range corrected lidar backscatter and (b) vertical-velocity variance observed on

2018/7/15 15:00-15:10 (local time).
• (c) the image encoded from 15-minute segment (radical wind speed + normalized 

backscatter or only normalized backscatter).
• (d)-(f) Virtual potential temperature, specific humidity, wind arrow measured by co-

launched radiosonde. The CBLH determined by vertical velocity variance is 904 m (red
line).

The flow chart of the training and localization process

Data Set
• One year of CDL data is collected and 30,000 

segment images are generated accordingly.
• Segment images and the ground truths from 36 days, 

72 days, 120 days, and 230 days randomly selected 
from the whole data set are used to train the model.

• Vertical measurements are excluded from training 
data.

• Data measured during 2018/12/30-2019/1/15 
(excluded from the training period) are chosen to 
examine the CBLH predicted by stacked hourglass 
network.

Results
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Figure 3:
• Time-height variation of (a) the Range corrected backscatter signal and (b) the vertical-velocity variance 

measured during 1/12-1/13, 2019. The CBLH predicted from the training bases of 72 days and 120 days Wr (blue 
△) and NBS (green ◦) are composed in (a) and (b).

• Aerosol Layer determined by gradient method (∂RCB/∂z, yellow line) is shown for comparison, where RCB is the 
range corrected signal in logarithm scale.
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Figure 2:
• The time series (2018/12/30-2019/1/15) of CBLH 

predicted by stacked hourglass network using 36 
days, 72 days, 120 days, and 230 days 
measurements as the training base.

• The predicted CBLH generally well agrees with the 
ground truth. 
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Figure 4:
• The frequency histogram of the difference 

between ground truths and CBLH predicted 
using 36, 72, 120, and 230 days Wr+NBS as 
training data.

• About 47% of predicted daytime CBLH are 
underestimated and 41% are overestimated.

Figure 5:
• Same figure 4 but using NBS as training 

data. 
• 46% of predicted daytime CBLH are 

underestimated
• 44% are overestimated

Figure 6:
• Same figure 5 but separate to daytime and 

nighttime. Training set of 120 days.
• The differences between daytime and nighttime 

is not significant.
• Both Wr+NBS and NBS tend to 1 level (26m) 

overestimated in the nighttime and 1 level 
underestimated in the daytime.

• About 45% of predicted night-time CBLH are 
underestimated and 59% are overestimated. 

• about 32% of predicted nighttime CBLH are 
under-estimated and 59% are overestimated. 

Frequency Histogram of the Difference (1 level ≈ 26 m)



Summary Size of Data for Training
MAE 36 Days 72 Days 120 Days 230 Days

Wr+NBS 136 m 75 m 65 m 56 m

NBS 147 m 122 m 104 m 89 m

Day /Wr+NBS 140 m 77 m 67 m 54 m

Night/Wr+NBS 140 m 72 m 61 m 57 m

Day /NBS 132 m 126 101 m 91 m

Night/NBS 150 m 116 99 m 85 m

Mean Absolute Error (MAE)
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• The mean value of CBLH during the testing period 
(2018/12/30 - 2019/1/15) are 433m and 255m for 
the daytime and the nighttime, respectively.

• The deep-learning based method can efficiently find 
the feature of CBLH from CDL products with MAE 
about 60∼120m without any prior assumption.

• A number of 72 days measurement is required 
obtained stable prediction.

• Our results also indicate that it is possible to derive 
CBLH from backscatter profiles measured by Mie 
lidars.


