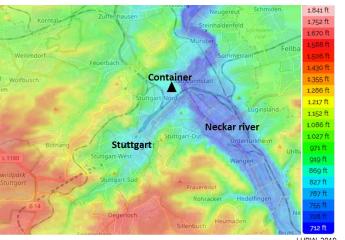


Boundary layer dynamic, aerosol composition, and air quality in the urban background of Stuttgart in winter

H. Zhang¹, W. Huang^{1,2}, X. shen^{1,3}, R. Ramisetty^{1,4}, O. Kiseleva ¹, J. Song¹, T. Leisner ¹, H. Saathoff¹

¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe, Germany

²Now at: Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki, Finland


³Now at: Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 47907, West Lafayette, Indiana, United States

⁴Now at: TSI Instruments India Private Limited, Bangalore, 560102, India

[08].[Atmospheric boundary layer processes] [30-Jun], [12:00 (UTC)] [Thursday_ 08_P16]

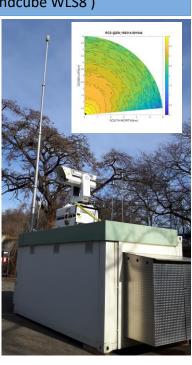
Motivation

- Stuttgart, one of the most polluted cities in Germany
- Urban location with high traffic emissions (fossil fuel combustion)

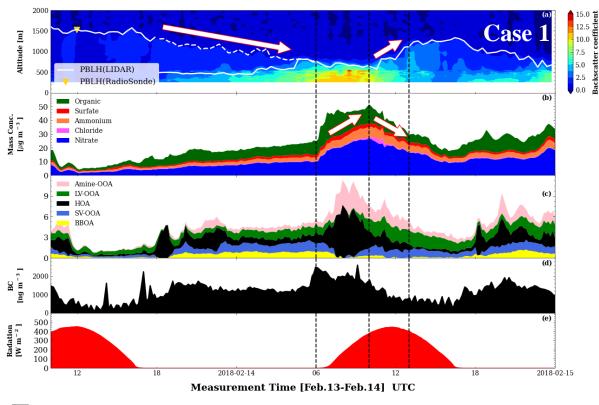
Downtown of Stuttgart

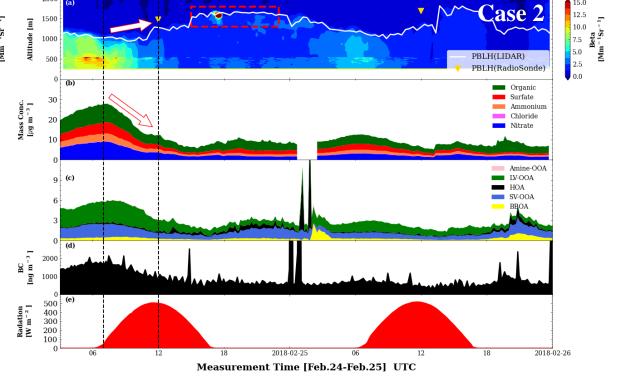
LUBW, 2019 Schwartz et al., Environ Res. 1991

Main goals:

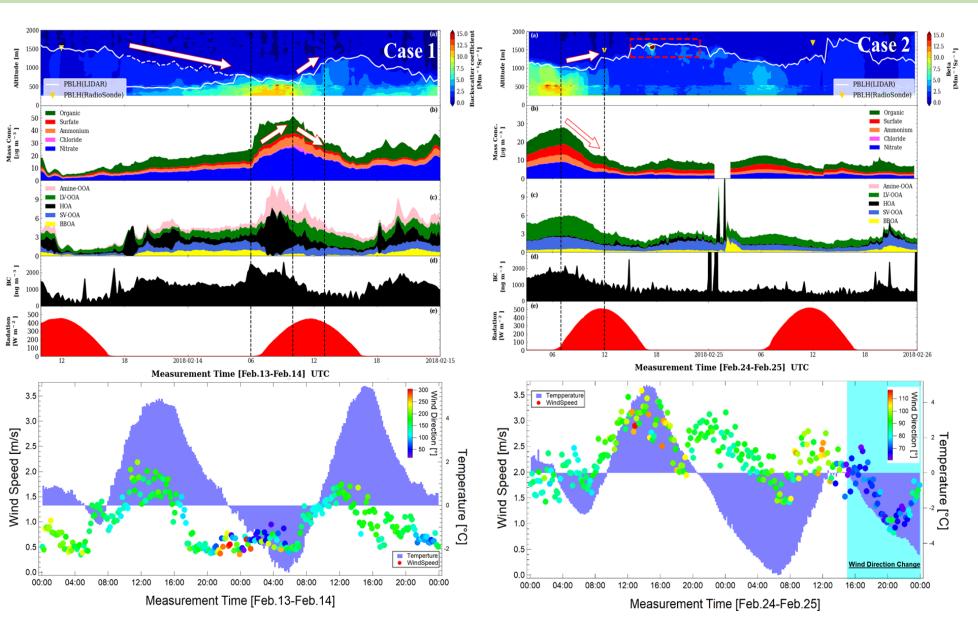

- ☐ Boundary layer dynamic
- Aerosol composition
- Interaction of aerosol and boundary layer

Methods


	Measured Parameters	Main Instruments
	Aerosol backscatter, N ₂ Raman, depolarization at 355 nm	Scanning depolarization Raman LiDAR
 	Particle composition, Non-refractory species, e.g. organics, inorganics, 70 nm – 2.5 μm	Aerosol mass spectrometer (HR-ToF-AMS)
	Aerosol particle number, size	Various particles sizers and counters
	Trace gas: O ₃ , NO, NO ₂ , CO ₂ , SO ₂ , NH ₃	Various gas monitors
	Meteorological parameters	Lufft WS800
	Vertical profiles of meteorological parameters	radio soundings, micro-wave radiometer
I	3D wind	Wind lidar (Windcube WLS8)


- Boundary layer dynamic, aerosol composition
- Scanning LiDAR allows us to get the vertical profile of aerosols from near ground level (overlap for vertical point LiDAR) to free troposphere.
- ☐ Scanning LiDAR allows independent determination of lidar ratio and corresponding extinction coefficients. (Zhang et al, remote sensing, 2022)
- ☐ PMF analysis for source apportionment

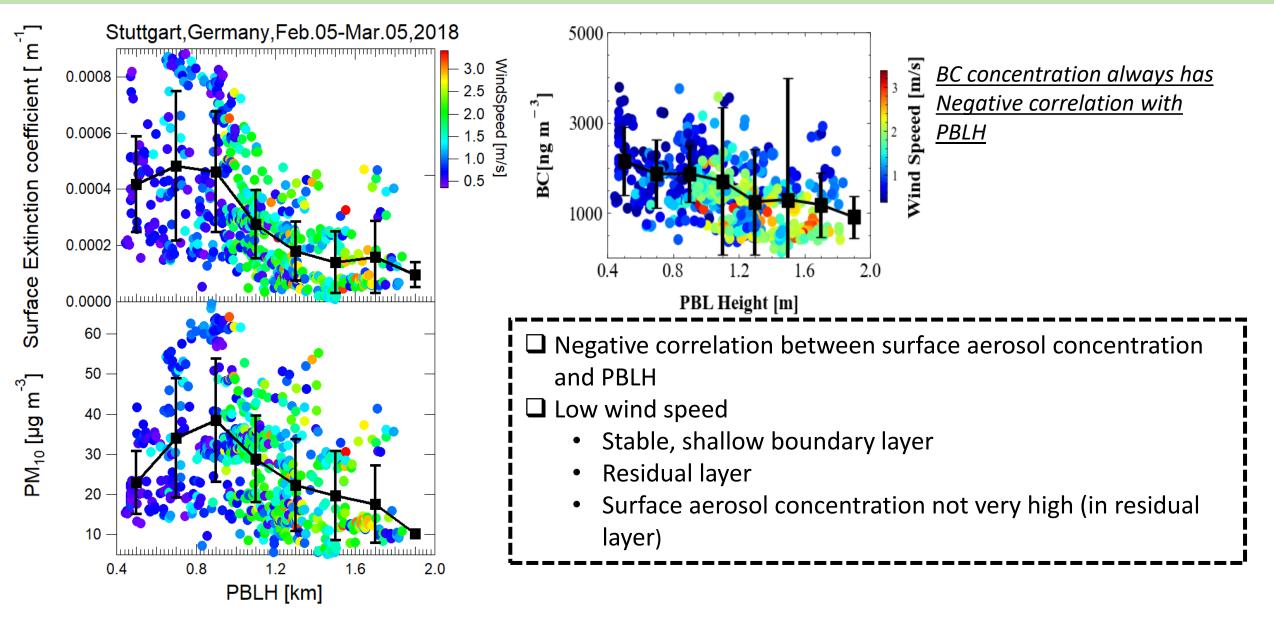
Results and Discussion



- ☐ Particles increased more during morning rush hour than in the evening (shallow PBL)
- ☐ Increasing PBL height leads to dilution of aerosols
- ☐ Increased aerosol during morning and evening rush hour is related to the emission of traffic (HOA) and industry (Amine-OOA)

- ☐ PBLH did not decrease after sunset on Feb. 24th
- ☐ Particles decreased sharply even PBL height did not increase correspondingly too much
- ☐ Lower particle concentrations on Feb. 25th vs. Feb. 24th
- ☐ Large fraction of LV-OOA is related to long range transport

Results and Discussion



- ☐ Compared with case 1, case 2 has:
 - Higher wind speed
 - Lower temperature in the second half of experiment
- Cold front that came across observation station in case 2 affected the structure of boundary layer and surface aerosol concentration.

Results and Discussion

Conclusion and Outlook

- ☐ Scanning lidar allows determination of low-level boundary layer (SBL) and direct comparison with ground level aerosol measurements
- ☐ The boundary layer characterized by LIDAR and radiosonde are consistent.
- ☐ Synoptic meteorology affects boundary layer structure hence influences surface aerosol concentration.
- ☐ The ground aerosol concentrations are anti-correlated with the heights of the convective boundary layer but was correlated with the height of stable boundary layer whereas the black carbon is always anti-correlated with the heights of the boundary layer.
- ☐ Further work will focus on comparison of a high resolution LES model with multiple remote sensing (e.g. micro-wave radiometer, wind lidar, aerosol lidar) and other measurements (e.g. radio soundings).

```
[08].[Atmospheric boundary layer processes]
[30-Jun], [12:00 (UTC) ]
[Thursday_ 08_P16]
```