

Design of a Powerful Transversely Pumped Ti:Sapphire Laser for Near-Infrared Lidar Application

Johannes Speidel, Hannes Vogelmann, Matthias Perfahl, Thomas Trickl

The dilemma

Differential Absorption Lidar (DIAL) measurements depend on:

- High pulse energies (good signal-to-noise ratio)
- Tunable lasers to match absorption lines
- Reliable spectral purity

Common solution:

Ti:Sapphire lasers, longitudinally pumped by Nd:YAG @532nm

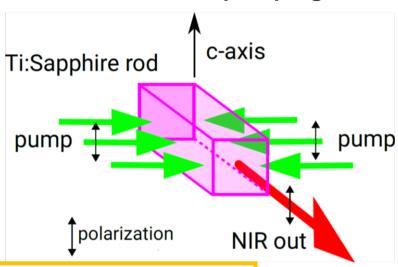
But:

Maximum energy storage by longitudinally pumped Ti:Sa is limited: Burning at the crystal faces!

Longitudinal pumping pump c-axis Ti:Sapphire **Polarization** Hotspots!

imk-ifu.kit.edu

The idea

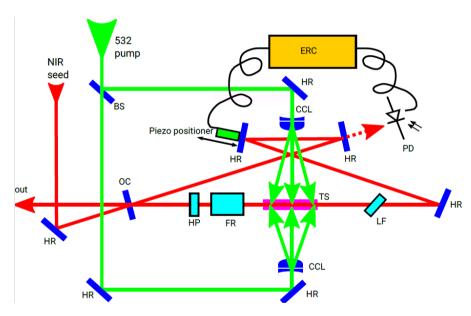


Permanent increase of commercially available pump laser energies

Therefore: Transversal pumping!

- Thermal energy is not concentrated on one single spot.
- Crystal burning is avoided by widening the pump beam.
- If pump energy further increases: Burning is avoided by longer crystal rods.

Transversal pumping

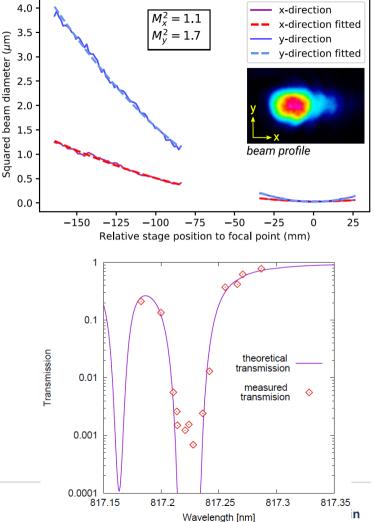

- Higher pump energies and longer rods increase the total amount of stored energy.
- Emission energies can be maximized!

The implementation

Karlsruhe Institute of Technology


- Transverse pumping of a 7x7x50mm Ti:Sa (TS) crystal in folded x-ring resonator
- Horizontal widening and vertical focusing of pump beam through lens pairs (CCL)
- Emission frequency constrained by birefringent filter (LF), unidirectional emission by polarization changes (HP/FR)
- Injection seeding by two external cavity diode lasers $(\lambda_{on}/\lambda_{off})$
- Adjusted resonator length to λ_{on} with mirror on piezo positioner, λ_{off} adapts to resonator length

* Installed inside the ATMONSYS lidar


The implementation

Further improvement definitely possible!

~7.5Mhz

1e6

Spectral bandwidth

The conclusion

- Transverse pumping...
 - is mechanically stable.
 - shows already high pulse energies.
 - promises scope for a lot of further improvement.
- Prototype is installed within the mobile ATMONSYS boundary layer lidar 🂪 🞉
- Future **deployment** of transversely pumped Ti:Sa on **Mount Zugspitze**
- Findings currently under review (Vogelmann et al., Appl. Optics)
- For details on the ATMONSYS lidar: visit poster Wednesday_09_P17

