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Abstract. Most LiDARs, though precise, are vulnerable to position and
pointing errors and, while �delity of location/pointing solutions can be
extremely high, determination of uncertainty remains relatively basic. As
a result, NASA's 2021 Surface Topography and Vegetation (STV) Incu-
bation Study Report lists vertical, horizontal, and geolocation accuracy
as an associated Science and Application Traceability Matrix product
parameter for most identi�ed Science and Application Knowledge Gaps
[5]. Currently, standard uncertainty quanti�cation (UQ) approaches are
plagued by simplifying approximations, ignored covariances, as well as
improperly modeled (often exclusively Gaussian) uncertainty sources.
The presented generalized Polynomial Chaos Expansion (gPCE) based
method has wide ranging applicability to improve vertical, horizontal po-
sitioning and geolocation uncertainty estimates, for all STV disciplines,
by more completely describing total aggregated uncertainties, from sys-
tem level to geolocation, and intrinsically accounting for covariance be-
tween variables (without the need to manually construct a covariance
matrix). gPCE also does not rely on many of the simplifying assump-
tions used in standard methods. Most importantly, it supports a number
of additional (non-Gaussian) uncertainty sources, and arbitrarily high
orders of variable cross-moments. gPCE is presented here, for the bare
Earth case, as a proof of concept.
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1 Motivation

NASA's 2021 Surface Topography and Vegetation (STV) Incubation Study Re-
port lists vertical, horizontal, and geolocation accuracies as an associated Sci-
ence and Application Traceability Matrix product parameter for most, identi-
�ed Science and Application Knowledge Gaps, highlighting one of the primary
shortcomings of modern LiDARs [5]. Though the precision instrument location,
pointing, and, subsequent, geolocation capabilities of modern LiDAR systems
is very high, many systems are vulnerable to position and pointing errors, as
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even small deviations from the expected principal axis lead to projection errors
on target [3, 1, 2]. Currently, Uncertainty Quanti�cation (UQ) remains relatively
basic or non-existent for most instruments. This is, likely, due to the di�culty
posed by determining uncertainties and the dubious �delity of common methods,
such as Total Propagated Uncertainty (TPU) and variations thereof. In fact, a
known issue (since 2019) of the ICESat-2 Global Geolocated Photon data set
(ATL03) has been the lack of dynamically calculated uncertainty estimates [4].
TPU methods, while computationally tractable, are often plagued by simplifying
approximations and ignored covariances, potentially leading to under- or over-
reporting of uncertainty estimates. Additionally, uncertainty sources are often
exclusively modeled as Gaussian, inaccurately capturing some variable distribu-
tions, e.g., in the case of bathymetric LiDARs, wave spectral distributions are
better described by Gamma distributions, which are supported under gPCE.

The presented research addresses speci�c knowledge gaps in LiDAR measure-
ment uncertainty through a more complete description of total aggregated uncer-
tainties, from system level to geolocation, by applying a generalized Polynomial
Chaos Expansion (gPCE) based UQ approach. This method has wide ranging
applicability to improve vertical and horizontal positioning, and geolocation un-
certainty estimates, for all STV disciplines. gPCE can do so, by accounting for
a number of factors, including covariances between variables (without manually
constructing a covariance matrix), by properly representing input variable un-
certainty distributions, and by minimizing the number of required simplifying
assumptions. This is done by constructing and analyzing a surrogate model of
the LiDAR system and its components (including platform), and subsequently
applying the results of the model to the data directly. In a sense, gPCE can be
thought of as a combination of Monte Carlo (MC) and TPU methods, in which
the LiDAR system is modeled over a range of possible inputs (as in MC meth-
ods), the results are analyzed and converted into a set of equations which can
propagate uncertainties, then these equations (as in TPU) are used to calculate
individual uncertainties for each point in a point cloud. Point-wise positioning
uncertainty determination using gPCE is less computationally expensive than
Monte Carlo methods, and more tractable for most dimensionalities of interest
(roughly from 3 to 20+ input variables). gPCE also does not rely on simpli-
fying assumptions used in typical TPU methods (most importantly, a number
of non-Gaussian uncertainty sources, and, an arbitrarily high order of variable
cross-moments, can be represented). Finally, a key attribute of this approach is
that global sensitivity analysis (GSA), after obtaining gPCE coe�cients, is triv-
ial and nearly costless to compute. GSA of system con�gurations/uncertainty is
a powerful tool to design and develop LiDAR systems with the measurement re-
quirements integrated directly into the design solution, as well as in the e�cient
operation and management of pre-existing LiDAR systems. gPCE is presented
here, for the bare-Earth use case, as a proof of concept, with plans to expand to
a bathymetric use case to demonstrate technique advantages due to complexi-
ties introduced by wave structure, roughness, entry angle, and water refractive
index.
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2 generalized Polynomial Chaos Expansion

ˆ⃗u(y⃗) =

P∑
i=0

c⃗jiΨj⃗i
(y⃗) + ϵˆ⃗u (1)

A more detailed discussion of gPCE will take place during this paper's session.
The generalized Polynomial Chaos Expansion, shown in Eq. 1, can be thought
of as analogous to the more familiar Fourier Series expansion. It consists of a
truncated in�nite series of coe�cients, c⃗ji , and orthogonal basis functions, Ψj⃗i

(more accurately speaking, however, it is a Karhunen-Loève Expansion, with
error in the expansion ϵˆ⃗u). The basis functions, as shown in Eq. 2, are the product
of a number of Askey polynomial functions (of varying order) in a given variable
(di�erent Askey polynomials are chosen for di�erent variable distributions).

Ψj⃗i
(y⃗) = ψji,1(y1) · ψji,2(y2) · ... · ψji,d(yd) (2)

The ability to use multiple, and di�erent, basis functions for di�erent in-
put variables, yi, allows gPCE to avoid the assumption that all variables are
Gaussian-distributed, and is central to the convergence of the method. In this
investigation, we make the choice to represent input variables in the form yi =
xi+ωi, such that the deterministic and stochastic components of each input can
be treated individually. This allows us to numerically integrate (computation-
ally e�ciently, thanks to gPCE's properties) over all stochastic components at
particular deterministic components (data points), in order to �nd the error in
a given measurement.

y⃗1
...
y⃗K︸︷︷︸

Input Samples

LiDAR System
==========⇒
Simulations

u⃗(y⃗1)
...

u⃗(y⃗K)︸ ︷︷ ︸
Solution Samples

Generate Ψj⃗i
(y⃗k),

===========⇒
Invert to �nd c⃗ji

ˆ⃗u(y⃗)
Apply to

========⇒
LiDAR Data

x̂ph, σx̂, ...

(3)
Though it is possible to solve for c⃗ji , the expansion coe�cients directly, this

approach tends to be di�cult due to the large number of terms in the expansion.
However, similar results can be had with other methods, such as inversion. In
this investigation, the work-�ow shown in Eq. 3 is used: First, a large number
of input samples is generated, then solution samples are calculated from these
inputs (using the same algorithm as might be applied to real data), and �nally,
the basis functions are calculated at the input samples and the system is inverted
to �nd the coe�cients. Once the gPCE model is found, it (or a truncated version
of it) can then be applied to the real lidar data, and the model can be used to
calculate the quantities of interest, such as the �bounce-point� location, the error
in that value and other quantities of interest, at little computational cost.

3 Preliminary Topographic LiDAR gPCE Results

Results presented here were generated with the gPCE method introduced in
the previous section, using the best analog for the ICESat-2 Photon Bounce
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Point Geolocation Algorithm we could generate (and compare to actual ICESat-
2 data), without direct access to either the ICESat-2 raw data or algorithm.
Certain simpli�cations to this algorithm were made, e.g. atmospheric delay cor-
rection is not calculated, in order to advance this proof of concept. ICESat-2
ATL02 and ATL03 data were used to inform the input variable ranges in or-
der to generate input variable samples. Due to space constraints, this section
contains only a brief overview of the most important results generated.

Fig. 1. gPCE coe�cient signi�cance for ICESat-2 Photon Bounce Point Height (above
WGS84), colors indicate coe�cient polynomial order (violet=0-th to yellow=4th order).

The gPCE technique, while still being actively developed and improved for
use with LiDAR systems, yielded several results indicating the potential utility
of the technique: Figure 1, shows the relative signi�cance of gPCE coe�cients,
generated by this technique, for the photon bounce point location height com-
ponent. Note the large di�erence between the most and least signi�cant terms
(≈ 50 orders of magnitude). In fact, only approximately 40 terms of 4850 had
a relative signi�cance greater than 1 ppm, indicating that the gPC-Expansion
achieved satisfactory convergence, and that a further truncated expansion (with
small terms removed) can still yield a high �delity solution (one potential sig-
ni�cance truncation point is shown at the 100 ppt signi�cance level).

A further signi�cant result, show in Fig. 2, is the ability of this technique
to generate a high �delity assessment of input-output parameter relationships.
Showing the same data points as Fig. 1, Fig. 2 has been changed to display the
total order in any given input parameter via the color of each point, as one might
be interested in for design purposes, and shows a few interesting results. Namely,
that the roll, pitch, and yaw pointing angles (and their uncertainties), show a
greater signi�cance level than the spacecraft position (in Earth-Centered Inertial
Coordinates). The yaw pointing angle result, in particular, is a surprising one,
given that the ICESat-2 instrument is a near-nadir pointing instrument, which
intuitively should not be signi�cantly impacted by yaw errors; this result is likely
due to the slight, o�-nadir components introduced by pitch and roll angles, which
introduce a beam sweeping e�ect when the yaw angle is changed.
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Fig. 2. gPCE coe�cient relative signi�cance for ICESat-2 Photon Bounce Point Height
(above WGS84), colors indicate coe�cient polynomial order in a given variable (vio-
let=constant in a given variable, yellow=4th order in a given variable).

Fig. 3. gPCE model evaluated at a single data point with all variables held constant ex-
cept roll and pitch, to show bounce point height sensitivity to roll, pitch, and roll+pitch
e�ects. (Roll, pitch ranges kept broad for illustrative purposes.)

Fig. 3 shows an important capability of the gPCE technique, namely that
various relationships between variables can be individually investigated. The
gPCE bounce point height is evaluated at a particular set of input variables,
which are all held constant, except for roll and pitch, which are allowed to vary.
The resulting �gure allows us to inspect visually the e�ect of the errors in each
of these variables and how they are related; for example, near the center of the
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�gure, a given set of roll and pitch will clearly result in a much smaller height
error, than at any of the four corners of this �gure. Of additional interest is the
fact that unlike the intuitive, bowl-shaped �gure that may be expected when
roll, pitch are varied (and ToF is held constant), the saddle shape shown in
Fig. 3 more closely matches the physics of the ATLAS Photon Bounce Point
Geolocation Algorithm. Speci�cally, ICESat-2's velocity (and associated motion
during the photon ToF) requires that the length of each leg of the round trip be
allowed to vary independently, causing this e�ect.

4 Concluding Remarks

gPCE, with it's ability to model covariances (as well as higher order cross-
moments), it's reduced set of assumptions (over commonly used methods), and
it's ability to natively represent non-Gaussian error sources, shows promise to
improve vertical, horizontal, and geolocation accuracy for a wide range of STV
disciplines. Meanwhile, all of this is accomplished with a technique and code that
is portable and extensible to a wide variety of systems, platforms, and LiDAR
processes and data products (e.g., bathymetric, atmospheric, topographical data,
etc.) to enhance existing scienti�c returns and optimize future research.
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