Applications with Ceilometer with Depolarization Ratio Measurement

Minttu Tuononen⁽¹⁾, Raisa Lehtinen⁽¹⁾, Reijo Roininen⁽¹⁾

(1) Vaisala Oyj, Vanha Nurmijärventie 21, 01670 Vantaa, Finland, E-mail:minttu.tuononen@vaisala.com

Ceilometers are robust, standalone, and cost-effective lidar-based remote sensing instruments. Conventionally, ceilometers are used in aviation to detect cloud base heights. Ceilometers can also be used for atmospheric profiling, and the applications using profile information are becoming more common, as well as operative networks of profiling instruments. Development of new ceilometers with additional measurement capabilities enables more thorough sensing of the atmosphere, covering a variety of applications. The focus of this presentation is on the different application possibilities that a new lidar ceilometer with a depolarization measurement capability offers.

High-quality attenuated backscatter profiles are used for cloud, boundary-layer, and elevated aerosol-layer profiling. The further addition of the depolarization ratio profiling allows more straightforward and detailed analysis of the current atmospheric conditions. With these measurements, it is not only possible to increase the public safety operationally, but also to investigate atmospheric phenomena in more detail. The newly developed instrument operates with 910.55 nm wavelength and can measure both attenuated backscatter and depolarization ratio. Depolarization ratio with 910.55 nm is a novel measurement capability, thus beneficial addition for example for aerosol characterization.

The differentiation of liquid cloud droplets and ice crystals and the differentiation of rain/drizzle and snowfall is now more accurate and easier with the depolarization measurement. In addition, the detection of the melting layer and icing conditions – potentially hazardous for aviation, wind energy and roads – are easier to identify. The structure of the boundary layer and elevated aerosol layers can be monitored in more detail. The depolarization ratio measurement using a new wavelength can be used to investigate the aerosol characteristics and type, for example detecting volcanic ash.

In this presentation, we show how different conditions can be distinguished – from hydrometeor and precipitation type analysis to measurement examples of wildfire smoke, volcanic ash, and dust. In addition, more accurate identification of potential icing conditions is discussed.